Data Mining and Machine Learning: Fundamental Concepts and Algorithms

Data Mining and Machine Learning: Fundamental Concepts and Algorithms

by Mohammed J. Zaki, Wagner Meira, Jr

Hardcover(Second edition)

$74.99
Members save with free shipping everyday! 
See details

Overview

The fundamental algorithms in data mining and machine learning form the basis of data science, utilizing automated methods to analyze patterns and models for all kinds of data in applications ranging from scientific discovery to business analytics. This textbook for senior undergraduate and graduate courses provides a comprehensive, in-depth overview of data mining, machine learning and statistics, offering solid guidance for students, researchers, and practitioners. The book lays the foundations of data analysis, pattern mining, clustering, classification and regression, with a focus on the algorithms and the underlying algebraic, geometric, and probabilistic concepts. New to this second edition is an entire part devoted to regression methods, including neural networks and deep learning.

Product Details

ISBN-13: 9781108473989
Publisher: Cambridge University Press
Publication date: 01/30/2020
Edition description: Second edition
Pages: 776
Product dimensions: 7.28(w) x 10.12(h) x 1.77(d)

About the Author

Mohammed J. Zaki is Professor of Computer Science at Rensselaer Polytechnic Institute, New York, where he also serves as Associate Department Head and Graduate Program Director. He has more than 250 publications and is an Associate Editor for the journal Data Mining and Knowledge Discovery. He is on the Board of Directors for Association for Computing Machinery's Special Interest Group on Knowledge Discovery and Data Mining (ACM SIGKDD). He has received the National Science Foundation CAREER Award, and the Department of Energy Early Career Principal Investigator Award. He is an ACM Distinguished Member, and IEEE Fellow.

Wagner Meira, Jr is Professor of Computer Science at Universidade Federal de Minas Gerais, Brazil, where he is currently the chair of the department. He has published more than 230 papers on data mining and parallel and distributed systems. He was leader of the Knowledge Discovery research track of InWeb and is currently Vice-chair of INCT-Cyber. He is on the editorial board of the journal Data Mining and Knowledge Discovery and was the program chair of SDM'16 and ACM WebSci'19. He has been a CNPq researcher since 2002. He has received an IBM Faculty Award and several Google Faculty Research Awards.

Table of Contents

1. Data mining and analysis; Part I. Data Analysis Foundations: 2. Numeric attributes; 3. Categorical attributes; 4. Graph data; 5. Kernel methods; 6. High-dimensional data; 7. Dimensionality reduction; Part II. Frequent Pattern Mining: 8. Itemset mining; 9. Summarizing itemsets; 10. Sequence mining; 11. Graph pattern mining; 12. Pattern and rule assessment; Part III. Clustering: 13. Representative-based clustering; 14. Hierarchical clustering; 15. Density-based clustering; 16. Spectral and graph clustering; 17. Clustering validation; Part IV. Classification: 18. Probabilistic classification; 19. Decision tree classifier; 20. Linear discriminant analysis; 21. Support vector machines; 22. Classification assessment; Part V. Regression: 23. Linear regression; 24. Logistic regression; 25. Neural networks; 26. Deep learning; 27. Regression evaluation.

Customer Reviews