Masters of the Planet: The Search for Our Human Origins

Masters of the Planet: The Search for Our Human Origins

by Ian Tattersall

NOOK Book(eBook)

View All Available Formats & Editions

Available on Compatible NOOK Devices and the free NOOK Apps.
WANT A NOOK?  Explore Now


50,000 years ago – merely a blip in evolutionary time – our Homo sapiens ancestors were competing for existence with several other human species, just as their own precursors had been doing for millions of years. Yet something about our species separated it from the pack, and led to its survival while the rest became extinct. So just what was it that allowed Homo sapiens to become Masters of the Planet? Curator Emeritus at the American Museum of Natural History, Ian Tattersall takes us deep into the fossil record to uncover what made humans so special. Surveying a vast field from initial bipedality to language and intelligence, Tattersall argues that Homo sapiens acquired a winning combination of traits that was not the result of long term evolutionary refinement. Instead it emerged quickly, shocking their world and changing it forever.

Product Details

ISBN-13: 9781137000385
Publisher: St. Martin''s Publishing Group
Publication date: 03/27/2012
Series: MacSci
Sold by: Macmillan
Format: NOOK Book
Pages: 288
Sales rank: 183,051
File size: 3 MB

About the Author

Ian Tattersall, PhD is a curator in the Division of Anthropology of the American Museum of Natural History in New York City, where he co-curates the Spitzer Hall of Human Origins. He is the acknowledged leader of the human fossil record, and has won several awards, including the Institute of Human Origins Lifetime Achievement Award. Tattersall has appeared on Charlie Roseand NPR's Science Friday and has written for Scientific American and Archaeology. He's been widely cited by the media, including The New York Times, BBC, MSNBC, and National Geographic. Tattersall is the author of Becoming Human, among others. He lives in New York City.

Ian Tattersall, PhD is a curator in the Division of Anthropology of the American Museum of Natural History in New York City, where he co-curates the Spitzer Hall of Human Origins. He is the acknowledged leader of the human fossil record, and has won several awards, including the Institute of Human Origins Lifetime Achievement Award. Tattersall has appeared on Charlie Rose and NPR's Science Friday and has written for Scientific American and Archaeology. He's been widely cited by the media, including The New York Times, BBC, MSNBC, and National Geographic. Tattersall is the author of Becoming Human, among others. He lives in New York City.

Read an Excerpt

Masters of the Planet

The Search for Our Human Origins

By Ian Tattersall

St. Martin's Press

Copyright © 2012 Ian Tattersall
All rights reserved.
ISBN: 978-1-137-00038-5



Among the most important influences not only on how ancient creatures evolved, but on their preservation as fossils, has been the geography and topography of the Earth itself. This has been as true for our group as for any other, so it's worth giving a bit of background here. During the Age of Mammals that followed the demise of the dinosaurs some 65 million years ago, much of the African continent was a flattish highland plateau. This slab of the Earth's crust lay over the roiling molten rocks of the Earth's interior like a great thick blanket, trapping the heat below. Heat must rise, and eventually ascending hot rock began to swell the rigid surface above.

Thus began the formation of the great African Rift, the "spine of Africa," that formed as a series of more or less independent but ultimately conjoined areas of uplift known as "domes." These blistered and split apart the continent's surface along a line that started in Syria, proceeded down the Red Sea, then south from Ethiopia through East Africa to Mozambique. The Rift's major feature, the Great East African Rift Valley, formed as a complex chain of sheer-sided depressions when the swelling below cracked the inflexible rock at the surface. As the continent continued to rise with the injection of more hot rock from below, erosion by water and wind began to deposit sediments in the valley floors — sediments that contain an amazingly rich assortment of fossils. As a category, fossils technically include any direct evidence of past life, but the overwhelming majority of them consist of the bones and teeth of dead animals that were luckily — for paleontologists — covered and protected by marine or lake or river sediments before they could be obliterated by scavengers and the elements. And, as fate would have it, the sedimentary rocks of the Rift Valley include the most remarkable fossil record we have, from anywhere in the world, of the long history of mankind and its early relatives.

In eastern Africa, Rift sediments began to be deposited in the Ethiopian Dome about 29 million years ago, and similar deposits mark the initiation of the Kenya Dome only a few million years later, at about 22 million years. This occurred during the period known to geologists as the Miocene epoch, and it happens to have been an exceptionally interesting time in primate evolution, as the fossil record shows. It was what you might call "the golden age of the apes," and it set the stage for the evolution of the human family, which appeared toward its end.

Today's Great Apes — the chimpanzees, bonobos, gorillas, and orangutans — constitute a mere handful of forest species now restricted to tiny areas of Africa and a couple of southeast Asian islands. But the Miocene was the apes' heyday, and over its 18-million-year extent, scientists have named more than 20 genera of extinct apes from sites scattered all around the Old World, though mostly in East Africa. The earliest of these ancient apes are known as "proconsuloids." They scampered along the tops of large branches in the humid forests of the eastern African early Miocene in search of fruit, some 23 to 16 million years ago. Like today's apes, they already lacked tails; but in many ways they were more monkeylike, with less flexible forelimbs than those their descendants eventually acquired.

Around 16 million years ago, African climates seem to have become drier and more seasonal, changing the character of the forests. True monkeys began to flourish in the new habitat, and the proconsuloids themselves yielded to "hominoid" apes that more closely resembled their modern successors. Most notably, the apes of the later Miocene developed mobile arms that they could freely rotate at the shoulder joint, allowing efficient suspension of the body beneath tree branches and imparting all-around greater agility. These early hominoids also typically had molar teeth with thick enamel that were set in robust jaws, allowing them to tackle a broad range of seasonally available forest foods as they began spreading beyond the Afro-Arabian region into Eurasia.

In both Eurasia and Africa, paleontologists have found the remains of several different hominoid genera that date back between about 13 and 9 million years ago. These probably represent the group that gave rise to the first members of our own "hominid" family (or "hominin" subfamily; for most purposes the distinction is merely notional). Most of the genera concerned are known principally from teeth and bits of jaw and cranium; but one of them, the 13-million-year-old Pierolapithecus, is well known from a fairly complete skeleton discovered not long ago in Spain. Pierolapithecus was clearly a tree climber, but it also showed a host of bony characteristics that suggest it habitually held its body upright. Such a posture — in the trees, at least — may actually have been typical for many hominoids of the time (as it is for orangutans today). However, the skull and teeth of Pierolapithecus are different from those of any of the putative early hominids that we'll read about in a moment.


The earliest representatives of our own group lived at the end of the Miocene and at the beginning of the following Pliocene epoch, between about six and 4.5 million years ago. And they appear just as the arrival of many new open-country mammal genera in the fossil record signals another major climatic change. Oceanic cooling affected rainfall and temperatures on continents worldwide, giving rise in tropical regions to an exaggerated form of seasonality often known as the "monsoon cycle." In Europe this cooling led to the widespread development of temperate grasslands, while in Africa it inaugurated a trend toward the breakup of forest masses and the formation of woodlands into which grasslands intruded locally. This episode of climatic deterioration furnished the larger ecological stage on which the earliest known hominids made their debut.

Before we look at the varied cast of contenders for the title of "most ancient hominid," perhaps we should pause for a moment to consider just what an early hominid should look like. How would we recognize the first hominid, the earliest member of the group to which we belong to the exclusion of the apes, if we had it? The question seems straightforward, but the issue has proven to be contentious, especially since members of related lineages — such as our own and that of the chimpanzees — should logically become more similar to each other, and thus harder to distinguish, as they converge back in time toward their common ancestor. But while the characteristics that define modern groups should even in principle lose definition back in the mists of the past, attempts to recognize very early hominids have paradoxically been dominated by the search for the early occurrence of those features that mark out their descendants today.

When the Dutch physician Eugene Dubois discovered the first truly ancient human fossil in Java in 1891, he called his new find Pithecanthropus erectus ("upright ape-man"). His choice of species name emphasized the importance he attached to the erect stature of this hominid (indicated by the structure of its thighbone) in determining its human (or at least close-to-human) status. But soon thereafter the emphasis changed, at least temporarily. Modern people are perhaps most remarkable for their large brains; and in the early years of the twentieth century, brain size expansion replaced uprightness as the key criterion for any fossil seriously considered for inclusion in the hominid family. Indeed, its big human braincase (which was matched with an ape jawbone) was the basis for recognizing the famously fraudulent English Piltdown "fossil" as a human ancestor in 1912. The fraud was only officially uncovered some 40 years later, although many scientists were suspicious of it from the start; and as time passed the Piltdown specimens became increasingly ignored, which had the effect of bringing the big-brain criterion into disfavor. In its place came a behavioral yardstick rather than an anatomical one: manual dexterity and the manufacture of stone tools became the key to human status, as the notion of "Man the Toolmaker" took hold.

But this too had its difficulties. Eventually and inevitably, attention refocused on anatomy, and various potentially diagnostic morphological features of hominids were touted. Teeth, which are coated with the toughest biological material and thus preserve particularly well in the fossil record, received particular attention. One dental characteristic that many noticed among potential early hominid fossils was thick molar enamel — although, as we have seen, this indicator of a tough diet is also found widely among Miocene apes. Another hominid dental feature that has perennially attracted attention is the reduction in size of the canine teeth. This occurs in conjunction with the loss of honing of the large upper canine against the front premolar of the lower jaw with which it occludes. Large-bodied male apes typically have fearsome upper canine teeth with razor-sharp back edges — although in small females these teeth can be dainty. But again, a tendency toward canine reduction is not unique to hominids. It is also found in various Miocene apes, most famously the bizarre late-Miocene Oreopithecus, an insular form that additionally showed a distinct tendency toward postural uprightness. What is more, the remarkable Oreopithecus was recently reported to have had "precision-grip capability" — something else that was once thought unique to tool-making hominids.

Part of the problem of spotting features that are unique to hominids stems from the nature of evolutionary diversification. As we look farther back into hominid history, every feature indicative of modern hominids is likely to become less distinctive — and more reminiscent of its counterparts in members of related lineages. Given this reality, it is hardly realistic to expect that we'll ever find an anatomical "silver bullet" that will by itself tell us infallibly if an ancient fossil is a hominid or not. Every effort to do this has foundered on one technicality or another. Take, for example, the early-twentieth-century attempt of the English anatomist Sir Arthur Keith to set a "cerebral Rubicon" of 750 cubic centimeters (cc) minimum brain volume for membership in the genus Homo. Any smaller than this, Keith said, and you didn't belong to the club. This was certainly a convenient and easily measurable criterion; and, at a time when very few hominid fossils were known, perhaps it was even a workable one. But predictably, as the hominid fossil sample increased, problems arose. Brain size is notably variable within populations (modern human brains range in size from about 1,000 to 2,000 cc, with no indication that people with larger brains are necessarily smarter), so that even in principle this standard might have admitted an ancient hominid to our genus while excluding his or her parents or offspring. Accumulating fossil finds predictably forced later authors to lower Keith's figure several times, until it became obvious that the entire "Rubicon" idea was misguided.

Similar objections apply to any touchstone of this kind for membership in the genus Homo or the family Hominidae. But the temptation to see matters from the "key criterion" perspective is nevertheless always there. Indeed, in recent years paleoanthropologists have come full circle back to Dubois' view, so that the most notable common factor uniting all currently touted "earliest hominids" is the claim that each had walked bipedally on the ground. This seemingly straightforward standard for membership in our family is particularly attractive given that in the latest Miocene the eastern African forests were beginning to yield to patches of more open territory. This would have obliged at least some ape populations to spend more time on the ground (though extinction was, as always, the easier option for steadfastly arboreal types). Still, if this environmental change forced one ape lineage to stand upright, why not others? Several likely did; but only one of them can have been the hominid progenitor.

A further confounding factor is that all of the known "very early hominid" fossils have been found in contexts indicating thickly wooded habitats, or at least mixed ones. The earliest hominids were thus not obliged to walk upright on the ground by the disappearance of their ancestral habitat. We humans have rather reductionist minds, and are beguiled by clear, straightforward explanations. But where murky Mother Nature is concerned, beware of excessively simple stories.


Until close to the turn of this century, the known hominid fossil record extended back in time to only about three to four million years ago. But a remarkable series of finds has since turned up a variety of contenders for the mantle of "earliest" hominid that are significantly older than this. The oldest of them come from around the time that DNA studies suggest our ancestors parted company with our closest ape relatives, believed to be the chimpanzees and bonobos.

"Toumaï" andOrrorin

The most ancient of the "earliest hominids" on offer today is the close-to-seven-million-year-old species Sahelanthropus tchadensis, discovered in 2001 in the central-western African country of Chad (well to the west of the Rift Valley). What has so far been published of this form consists of a badly crushed cranium (informally dubbed "Toumaï" — "hope of life" in the local language) and some partial mandibles. These fossils caused a stir when discovered, because nobody had anticipated an ancestral hominid like this. What was particularly strange about Toumaï was that it combined a small (hence rather apelike) braincase with a large, flattish face that was distinctly unlike the more protruding snouts of younger fossil hominids (or apes, for that matter). Two things caused its describers to classify this form as a hominid: first, the teeth. The molars had moderately thick enamel, the canines were reduced, and there was no lower premolar honing mechanism. So far, so good; but as we've seen, both thick enamel and the reduced canine-premolar complex can be matched outside Hominidae. So the key finding was in the base of the crushed cranium, where the foramen magnum, the large hole through which the spinal cord exits the cranium, appeared to be shifted underneath the skull to face largely downward. This is significant in that you would expect to find this setup in an upright biped like us: a skull balanced atop an erect spine. In a quadrupedal chimpanzee, the skull hangs on the front of a horizontal spine, so the foramen magnum has to be at the rear of the skull, facing backward. Unfortunately, though, the skull of Sahelanthropus was badly crushed, so the crucial claim about its foramen magnum was inevitably disputed.

In response, researchers took CT-scans of the crushed skull in a medical scanning machine, and produced a computerized virtual reconstruction that eliminated the distortions. Now, no matter how high-tech the procedure is, there's always an element of human judgment involved in making any reconstruction. But the resulting model of the pristine Sahelanthropus skull gave its creators substantial grounds for viewing Toumaï as plausibly — if not definitively — the skull of a biped. There are still some skeptics; but although the bipedality question will never be finally settled until key parts of the body skeleton of Sahelanthropus are announced, the reconstruction does appear to give this form the benefit of the doubt.

If Toumaï was a hominid — or even if he wasn't — what can we say about his way of life? Fossils found in the same deposits suggest that Sahelanthropus lived in an environment that was well watered, with forest in the close vicinity. This doesn't tell us much directly, but it does say something about the kind of resources that were available to this presumed ancestor. Put this information together with its posture, its habitat, and the general form of its teeth, and it seems reasonable to suggest that Sahelanthropus was at least a part-time biped that subsisted on a fairly generalized plant-based diet that would have included fruit, leaves, nuts, seeds, and roots, and probably extended to insects and small vertebrates such as lizards. For the moment it's probably unwise to say too much beyond that, though we'll speculate a bit about such things as the nature of early hominid sociality in a little while.


Excerpted from Masters of the Planet by Ian Tattersall. Copyright © 2012 Ian Tattersall. Excerpted by permission of St. Martin's Press.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents


Major Events in Human Evolution,
Notes and Bibliography,

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

Masters of the Planet: The Search for Our Human Origins 4.4 out of 5 based on 0 ratings. 7 reviews.
Anonymous More than 1 year ago
JBD1 on LibraryThing More than 1 year ago
Having read and enjoyed Ian Tattersall's earlier work The Fossil Trail for a college class several years ago, I was delighted to see his latest, Masters of the Planet: The Search for Our Human Origins (Palgrave Macmillan, 2012). The two works cover much the same ground; Tattersall offers an overview of recent research into the evolutionary history of hominid species, highlighting the latest finds and discoveries of fossilized hominid remains, tools, &c.A couple things that struck me about this book: first, how much of the hominid record is still uncertain at best. Tattersall quite frequently has to add qualifiers to his statements since they're based on the very small bits of data that have been discovered and studied so far. Along the same lines, he pillows many assertions with the note that not all scholars agree with this interpretation or that. It was refreshing, actually, to see how much of all this isn't settled science, and how the discovery of a single fossil might put a whole new light on things (as the discovery of Homo floresiensis a few years ago did).I'm glad I read this book fairly close on the heels of E.O. Wilson's The Social Conquest of Earth. While Tattersall doesn't get into the evolution of social behavior, his other conclusions generally seem to jive with Wilson's fairly closely, but Tattersall is able to explore at greater depth some of the specific early hominid fossil sites, and to offer additional anatomic and taxonomic details about the species he discusses. I'd actually like to see a conversation between Tattersall and Wilson about whether they see things differently ... wouldn't that be something?Packed with detail, but quite readable, and supplemented with a long list of sources should you find yourself interested in a particular topic.
stellarexplorer on LibraryThing More than 1 year ago
This was a lovely overview of the state of our knowledge of human origins. Dr. Tattersall has summarized many intriguing findings spanning the range from the radiological evidence of the diet of our Australopithecine predecessors to the advent of symbolic thinking in our immediate forbearers. Personally, I would have been happy with greater technical focus, but this was an immensely readable telling. I recommend it without hesitation for the reader seeking a broad but intriguing account of our coming to be who we are as a species. The writing was quite up to the task. Bravo!
Jaylia3 on LibraryThing More than 1 year ago
This sometimes surprising, always fascinating book on the history of human species examines the fossil record to explain what we know about the developmental path from the earliest ape-like hominids to the prehistory of our own Homo sapiens ancestors. For most of human existence several species co-existed, sometimes side-by-side. Why is there only us today? A lot goes into trying to answer that question, including what trait or traits characterize humanness, how early climate changes and population densities affected the speed of evolutionary adaptations, why technological advances sometimes come significantly after the structural changes that make them possible, and how early, less helpful theories of pioneering paleontologists are proving hard to shake. Central to the book is the determination of when and how humans became capable of symbolic reasoning, an adaptation author Ian Tattersall thinks may answer the question of why we are today the only humans on the planet. Did Neanderthals have that ability? It¿s still a contentious issue, but based on the evidence author Ian Tattersall thinks not. The title Masters of the Planet is, I think, at least somewhat tongue in cheek. While it¿s true that we Homo sapiens are the only humans left and that we are having an increasing impact on the planet, our tendency to be shortsighted is doing us no favors. Still, throughout human history we have proved to be masterful innovators, Tattersall documents this trait in us and our ancestors again and again, and that ability gives Tattersall hope for our future.This book was provided to me by the publisher with no review obligation, and the viewpoints are all mine.
bhowell on LibraryThing More than 1 year ago
I thoroughly enjoyed "Masters of the Planet" but cannot match some of the other reviews with respect to the science. I was nevertheless inspired and spent a lot of time thinking about each chapter. I was at the same time reading and enjoying Sebastian Faulks' brilliant novel "Human Traces" and at one point in the sweeping historical saga one of the characters visits the then "German East Africa' on a scientific expediton. They visit the famous footprints in the lava (actually discovered by Mary Leakey at Laetoli in 1978) but it is a thrilling story. After finishing the novel, I read the author's notes and acknowledgements and found that he thanked Professor Ian Tattersall at the Amercian Museum of Natural History and two other professors for assistance in this area. Reading the 2 books together was an unexpected pleasure. I am grateful to have received this book from librarything and it was an enjoyable update on new research in the area.
JeffV on LibraryThing More than 1 year ago
Masters of the Planet attempts to determine at what point in history traits that would come to define homo sapiens appeared and developed. With a fossil record not nearly as complete as we'd like it to be as well as clues in geographically distant locations but far apart chronologically, there is still an awful lot of guesswork involved. Tattersall takes on a tour through the earliest hominids, from the first apes to stand and walk on two feet, to early branches of the hominid tree where our form and function began to take shape, to the neanderthals and the dominance of modern homo sapiens. We see the evidence, sketchy as it is, how and why hominids developed into omnivores. We not only see our brains grow, but why only certain areas matter. Finally, the difference maker is not so much physiological as it is intellectual. The difference between the brawnier, larger-brained neanderthal and Cro-magnon man was the ability to attach symbolic importance to objects in the world around them. This fueled further, faster brain development -- faster than in any other time over the course of our evolution. Now that humans have adapted to nearly every terrestrial ecosystem on the planet, the agents of change that steered the evolutionary train that led to us has pretty much derailed. Small changes might give important advantages in small populations and make a species more agile to environmental changes or in migrating to new niches. Those pressures no longer apply, and with 7 billion of us, it's unlikely that a new and improved man is going rise above the rest of us monkeys. However, that doesn't mean we still aren't evolving; the changes though won't be as outwardly apparent. Tattersall's writing style is a little dry. Stretches of Masters of the Planet can be tedious for those not already well-versed in the subject. I consider myself fairly well read on anthropology; there were some new things I learned to be sure, but I had to read carefully and think about the implications of what Tattersall wrote as he leaves most of his conclusions for the last few chapters (which I thought were the best written in the book).
Anonymous More than 1 year ago