Metropolitan Area WDM Networks: An AWG Based Approach

Metropolitan Area WDM Networks: An AWG Based Approach

by Martin Maier

Paperback(2004)

$149.99
Members save with free shipping everyday! 
See details

Overview

This extensive volume provides a comprehensive and technically detailed overview of the latest metropolitan area WDM network experimental systems, architectures and access protocols. Readers will benefit from the thorough overview and gain an in-depth understanding of current and next-generation metro WDM networks.

Product Details

ISBN-13: 9781461351139
Publisher: Springer US
Publication date: 10/31/2012
Edition description: 2004
Pages: 312
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

I Introduction.- 1. Basics.- 1.1 Components.- 1.1.1 Combiners and splitters.- 1.1.2 Passive star coupler (PSC).- 1.1.3 Arrayed-waveguide grating (AWG).- 1.1.4 Transmitters and receivers.- 1.2 Transmission impairments.- 1.2.1 Attenuation.- 1.2.2 Dispersion.- 1.2.3 Nonlinearities.- 1.2.4 Crosstalk.- 1.2.5 Noise.- II Metro WDM Networks.- 2. Ring Networks.- 2.1 Experimental systems.- 2.1.1 KomNet.- 2.1.2 RINGO.- 2.1.3 HORNET.- 2.2 WDM rings and access protocols.- 2.2.1 Slotted rings without channel inspection.- 2.2.2 Slotted rings with channel inspection.- 2.2.3 Slotted rings with control channel.- 2.2.4 Multitoken rings.- 2.2.5 Meshed rings.- 2.3 Fairness control and QoS support.- 2.3.1 Fairness control.- 2.3.2 QoS support.- 3. Star Networks.- 3.1 Experimental systems.- 3.1.1 RAINBOW.- 3.1.2 Telstra.- 3.1.3 NTT.- 3.2 Single-hop WDM networks and access protocols.- 3.2.1 Preallocation protocols.- 3.2.2 Random access protocols.- 3.2.3 Reservation protocols.- 3.2.4 Hybrid protocols.- 3.2.5 Resulting guidelines.- III AWG Based Approach.- 4. Architectural Comparisons.- 4.1 Single-hop vs. multihop AWG based networks.- 4.1.1 Architecture.- 4.1.2 Mean hop distance.- 4.1.3 Capacity.- 4.1.4 Results.- 4.1.5 Discussion.- 4.2 PSC vs. AWG based single-hop networks.- 4.2.1 Spatial wavelength reuse.- 4.2.2 Architecture and wavelength assignment.- 4.2.3 Analysis.- 4.2.4 Results.- 4.2.5 Discussion.- 4.3 Conclusions.- 5. Architecture and Protocol.- 5.1 Network requirements.- 5.2 Architecture.- 5.2.1 Underlying principles.- 5.2.2 Network and node architecture.- 5.3 MAC protocol.- 5.3.1 Protocol.- 5.3.2 An illustrative example.- 5.3.3 Discussion.- 5.4 Conclusions.- 6. Performance Evaluation.- 6.1 Using multiple FSRs.- 6.1.1 Assumptions.- 6.1.2 Model.- 6.1.3 Analysis.- 6.1.4 Results.- 6.2 Spatial wavelength reuse.- 6.2.1 Assumptions.- 6.2.2 Analysis.- 6.2.3 Results.- 6.3 Multicasting.- 6.3.1 Multicasting with partitioning.- 6.3.2 Multicasting simultaneously with control.- 6.4 Supplementary simulation results.- 6.4.1 Self-stability.- 6.4.2 Packet loss.- 6.4.3 Circuit switching.- 6.4.4 Benchmark comparison.- 6.5 Conclusions.- 7. Network Dimensioning and Reconfiguration.- 7.1 Multiservice convergence.- 7.2 Multiobjective optimization.- 7.2.1 Objective functions.- 7.2.2 Decision variables and constraints.- 7.2.3 Pareto optimality.- 7.3 Genetic algorithms.- 7.3.1 Basic principle.- 7.3.2 Genetic operations.- 7.4 Results.- 7.4.1 Pareto-optimal architecture planning.- 7.4.2 Pareto-optimal network operation.- 7.5 Conclusions.- 8. Feasibility Issues.- 8.1 Transmission limitations.- 8.1.1 Eye diagrams.- 8.1.2 Q factor.- 8.2 Packet traces.- 8.3 Discussion.- 8.4 Conclusions.- 9. Protection.- 9.1 Heterogeneous protection.- 9.2 AWG PSC architecture.- 9.3 MAC protocols.- 9.3.1 AWG-PSCmode.- 9.3.2 PSC-only mode.- 9.3.3 AWG-only mode.- 9.4 Results.- 9.5 Conclusions.- 10. Conclusions.- 10.1 Future research avenues.- 10.2 Standardization activities.- IV Appendices.- Appendices.- A Acronyms.- B.1 Refined approximation.- B.2 Numerical evaluation.- References.

Customer Reviews