Pub. Date:
Morgan and Claypool Publishers
On Uncertain Graphs / Edition 1

On Uncertain Graphs / Edition 1

by Arijit Khan, Yuan Ye, Lei ChenArijit Khan
Current price is , Original price is $44.95. You

Temporarily Out of Stock Online

Please check back later for updated availability.


Large-scale, highly interconnected networks, which are often modeled as graphs, pervade both our society and the natural world around us. Uncertainty, on the other hand, is inherent in the underlying data due to a variety of reasons, such as noisy measurements, lack of precise information needs, inference and prediction models, or explicit manipulation, e.g., for privacy purposes. Therefore, uncertain, or probabilistic, graphs are increasingly used to represent noisy linked data in many emerging application scenarios, and they have recently become a hot topic in the database and data mining communities. Many classical algorithms such as reachability and shortest path queries become #P-complete and, thus, more expensive over uncertain graphs. Moreover, various complex queries and analytics are also emerging over uncertain networks, such as pattern matching, information diffusion, and influence maximization queries. In this book, we discuss the sources of uncertain graphs and their applications, uncertainty modeling, as well as the complexities and algorithmic advances on uncertain graphs processing in the context of both classical and emerging graph queries and analytics. We emphasize the current challenges and highlight some future research directions.

Product Details

ISBN-13: 9781681730370
Publisher: Morgan and Claypool Publishers
Publication date: 07/23/2018
Series: Synthesis Lectures on Data Management
Pages: 94
Product dimensions: 7.50(w) x 9.30(h) x 0.00(d)

About the Author

Arijit Khan is an assistant professor in the School of Computer Engineering at Nanyang Technological University, Singapore. His research interests span in the area of big-data, big-graphs, and graph systems. He received his Ph.D. from the Department of Computer Science, University of California, Santa Barbara, and did a post-doc in the Systems group at ETH Zurich. Arijit was the recipient of the prestigious IBM Ph.D. Fellowship in 2012-13. He published several papers in premier database and data-mining conferences and journals including SIGMOD, VLDB, TKDE, ICDE, SDM, EDBT, and CIKM. Arijit co-presented tutorials on emerging graph queries, big-graph systems, summarization, and uncertain graphs at ICDE 2012, VLDB 2014, VLDB 2015, and VLDB 2017, and served in the program committee of KDD, SIGMOD, VLDB, ICDM, EDBT, WWW, and CIKM. Arijit served as the co-chair of Big-O(Q) workshop co-located with VLDB 2015.

Yuan Ye is now a professor in the Department of Computer Science, Northeastern University, China. His research interests are graph databases, probabilistic databases, social network analysis and big-data computing systems. Yuan Ye received the B.S., M.S., and Ph.D. degrees in Computer Science from Northeastern University in 2004, 2007, and 2011, respectively. He was a visiting scholar of the Hong Kong University of Science and Technology, the Chinese University of Hong Kong, and the University of Edinburgh. Yuan Ye published several papers in premier database conferences and journals including SIGMOD, VLDB, ICDE, CIKM, VLDB Journal, TKDE, and TPDS. He served in the program committee of SIGMOD, VLDB, ICDE, EDBT, and CIKM. Yuan Ye received the award of the CCF excellent doctoral dissertation in 2012 and the excellent youth scholar of NSFC in 2016.

Lei Chen received a B.S. in Computer Science and Engineering from Tianjin University, China in 1994, an M.A. from Asian Institute of Technology, Thailand, in 1997, and a Ph.D. in Computer Science from University of Waterloo, Canada in 2005. He is now an associate professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include uncertain databases, graph databases, multime80 AUTHORS’ BIOGRAPHIES dia, and time series databases, and sensor and peer-to-peer databases. He is editor-in-chief of the VLDB Journal and serving as an associate editor for IEEE Transactions on Knowledge and Data Engineering and Distributed and Parallel Databases. He is the PC Co-chair of the 45th International Conference on Very Large Databases (VLDB), 2019, and has served as PC Cochair, PC Track Chair, and PC member for many conferences. He was awarded the SIGMOD Test of Time Award in 2015. He is a member of the IEEE and ACM.

H. V. Jagadish is Bernard A Galler Collegiate Professor of Electrical Engineering and Computer Science, and Distinguished Scientist at the Institute for Data Science, at the University of Michigan in Ann Arbor. Prior to 1999, he was Head of the Database Research Department at AT&T Labs, Florham Park, NJ.

Professor Jagadish is well known for his broad-ranging research on information management, and has approximately 200 major papers and 37 patents. He is a fellow of the ACM, "The First Society in Computing," (since 2003) and serves on the board of the Computing Research Association (since 2009). He has been an Associate Editor for the ACM Transactions on Database Systems (1992-1995), Program Chair of the ACM SIGMOD annual conference (1996), Program Chair of the ISMB conference (2005), a trustee of the VLDB (Very Large DataBase) foundation (2004-2009), Founding Editor-in-Chief of the Proceedings of the VLDB Endowment (2008-2014), and Program Chair of the VLDB Conference (2014). Among his many awards, he won the ACM SIGMOD Contributions Award in 2013 and the David E Liddle Research Excellence Award (at the University of Michigan) in 2008.

Table of Contents

Table of Contents: Acknowledgments / Introduction to Uncertain Graphs / Reliability Queries / Graph Pattern Matching Queries / Graph Similarity Search Queries / Influence Maximization / Major Open Problems / Bibliography / Authors' Biographies

Customer Reviews